STL学习

刷算法时有必要使用一些stl.

容器

序列式容器

array

初始化 通过如下创建 array 容器的方式,可以将所有的元素初始化为 0 或者和默认元素类型等效的值:

1
std::array<double, 10> values {};

array 容器是 C++ 11 标准中新增的序列容器,简单地理解,它就是在 C++ 普通数组的基础上,添加了一些成员函数和全局函数。在使用上,它比普通数组更安全,且效率并没有因此变差。

成员函数功能
begin()返回指向容器中第一个元素的随机访问迭代器。
end()返回指向容器最后一个元素之后一个位置的随机访问迭代器,通常和 begin() 结合使用。
rbegin()返回指向最后一个元素的随机访问迭代器。
rend()返回指向第一个元素之前一个位置的随机访问迭代器。
cbegin()和 begin() 功能相同,只不过在其基础上增加了 const 属性,不能用于修改元素。
cend()和 end() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
crbegin()和 rbegin() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
crend()和 rend() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
size()返回容器中当前元素的数量,其值始终等于初始化 array 类的第二个模板参数 N。
max_size()返回容器可容纳元素的最大数量,其值始终等于初始化 array 类的第二个模板参数 N。
empty()判断容器是否为空,和通过 size()==0 的判断条件功能相同,但其效率可能更快。
at(n)返回容器中 n 位置处元素的引用,该函数自动检查 n 是否在有效的范围内,如果不是则抛出 out_of_range 异常。
front()返回容器中第一个元素的直接引用,该函数不适用于空的 array 容器。
back()返回容器中最后一个元素的直接应用,该函数同样不适用于空的 array 容器。
data()返回一个指向容器首个元素的指针。利用该指针,可实现复制容器中所有元素等类似功能。
fill(val)将 val 这个值赋值给容器中的每个元素。
array1.swap(array2)交换 array1 和 array2 容器中的所有元素,但前提是它们具有相同的长度和类型。

对于array相比一般的c数组,可以直接利用front,back获取前后引用,size函数获取个数,以及一般的容器迭代器等

同时还有at函数更加安全的获取array中的元素,但由于不能更改长度,实践中用的并不多

vector

begin()返回指向容器中第一个元素的迭代器。
end()返回指向容器最后一个元素所在位置后一个位置的迭代器,通常和 begin() 结合使用。
rbegin()返回指向最后一个元素的迭代器。
rend()返回指向第一个元素所在位置前一个位置的迭代器。
cbegin()和 begin() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
cend()和 end() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
crbegin()和 rbegin() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
crend()和 rend() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
size()返回实际元素个数。
max_size()返回元素个数的最大值。这通常是一个很大的值,一般是 232-1,所以我们很少会用到这个函数。
resize()改变实际元素的个数。
capacity()返回当前容量。
empty()判断容器中是否有元素,若无元素,则返回 true;反之,返回 false。
reserve()增加容器的容量。
shrink _to_fit()将内存减少到等于当前元素实际所使用的大小。
operator[ ]重载了 [ ] 运算符,可以向访问数组中元素那样,通过下标即可访问甚至修改 vector 容器中的元素。
at()使用经过边界检查的索引访问元素。
front()返回第一个元素的引用。
back()返回最后一个元素的引用。
data()返回指向容器中第一个元素的指针。
assign()用新元素替换原有内容。
push_back()在序列的尾部添加一个元素。
pop_back()移出序列尾部的元素。
insert()在指定的位置插入一个或多个元素。
erase()移出一个元素或一段元素。
clear()移出所有的元素,容器大小变为 0。
swap()交换两个容器的所有元素。
emplace()在指定的位置直接生成一个元素。
emplace_back()在序列尾部生成一个元素。

可以更改大小,在内存上是连续分布的.所以可以随机访问,跟一般的数组和array类似. 可以使用reserve函数调整大小,

1
values.reserve(20);

这样就设置了容器的内存分配,即至少可以容纳 20 个元素。注意,如果 vector 的容量在执行此语句之前,已经大于或等于 20 个元素,那么这条语句什么也不做;另外,调用 reserve() 不会影响已存储的元素,也不会生成任何元素,即 values 容器内此时仍然没有任何元素.

同时使用emplace,emplace_back,erase等来增加或删除元素.

emplace_back() 和 push_back() 的区别,就在于底层实现的机制不同。push_back() 向容器尾部添加元素时,首先会创建这个元素,然后再将这个元素拷贝或者移动到容器中(如果是拷贝的话,事后会自行销毁先前创建的这个元素);而 emplace_back() 在实现时,则是直接在容器尾部创建这个元素,省去了拷贝或移动元素的过程。

插入元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include <iostream> 
#include <vector>
#include <array>
using namespace std;
int main()
{
std::vector<int> demo{1,2};
//第一种格式用法
demo.insert(demo.begin() + 1, 3);//{1,3,2}

//第二种格式用法
demo.insert(demo.end(), 2, 5);//{1,3,2,5,5}

//第三种格式用法
std::array<int,3>test{ 7,8,9 };
demo.insert(demo.end(), test.begin(), test.end());//{1,3,2,5,5,7,8,9}

//第四种格式用法
demo.insert(demo.end(), { 10,11 });//{1,3,2,5,5,7,8,9,10,11}

for (int i = 0; i < demo.size(); i++) {
cout << demo[i] << " ";
}
return 0;
}

删除元素

函数功能
pop_back()删除 vector 容器中最后一个元素,该容器的大小(size)会减 1,但容量(capacity)不会发生改变。
erase(pos)删除 vector 容器中 pos 迭代器指定位置处的元素,并返回指向被删除元素下一个位置元素的迭代器。该容器的大小(size)会减 1,但容量(capacity)不会发生改变。
swap(beg)、pop_back()先调用 swap() 函数交换要删除的目标元素和容器最后一个元素的位置,然后使用 pop_back() 删除该目标元素。
erase(beg,end)删除 vector 容器中位于迭代器 [beg,end)指定区域内的所有元素,并返回指向被删除区域下一个位置元素的迭代器。该容器的大小(size)会减小,但容量(capacity)不会发生改变。
remove()删除容器中所有和指定元素值相等的元素,并返回指向最后一个元素下一个位置的迭代器。值得一提的是,调用该函数不会改变容器的大小和容量。
clear()删除 vector 容器中所有的元素,使其变成空的 vector 容器。该函数会改变 vector 的大小(变为 0),但不是改变其容量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#include <vector>
#include <iostream>
using namespace std;

int main()
{
std::vector<int> demo{ 1,2,3,4,5 };
//删除 2、3
auto iter = demo.erase(demo.begin()+1, demo.end() - 2);
cout << "size is :" << demo.size() << endl;
cout << "capacity is :" << demo.capacity() << endl;

for (int i = 0; i < demo.size(); i++) {
cout << demo[i] << " ";
}
return 0;
}

常用emplace,emplace_back,pop_back,erase对vector进行增删数据,使用at访问数据

deque

deque 容器和 vecotr 容器有很多相似之处,比如:

  • deque 容器也擅长在序列尾部添加或删除元素(时间复杂度为O(1)),而不擅长在序列中间添加或删除元素。
  • deque 容器也可以根据需要修改自身的容量和大小

和 vector 不同的是,deque 还擅长在序列头部添加或删除元素,所耗费的时间复杂度也为常数阶O(1)。并且更重要的一点是,deque 容器中存储元素并不能保证所有元素都存储到连续的内存空间中。

当需要向序列两端频繁的添加或删除元素时,应首选 deque 容器。

和 vector 相比,额外增加了实现在容器头部添加和删除元素的成员函数比如emplace_front,pop_font,同时删除了 capacity()、reserve() 和 data() 成员函数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <iostream>
#include <deque>
using namespace std;
int main()
{
//初始化一个空deque容量
deque<int>d;
//向d容器中的尾部依次添加 1,2,3
d.push_back(1); //{1}
d.push_back(2); //{1,2}
d.push_back(3); //{1,2,3}
//向d容器的头部添加 0
d.push_front(0); //{0,1,2,3}

//调用 size() 成员函数输出该容器存储的字符个数。
printf("元素个数为:%d\n", d.size());

//使用迭代器遍历容器
for (auto i = d.begin(); i < d.end(); i++) {
cout << *i << " ";
}
cout << endl;
return 0;
}

list

STL list 容器,又称双向链表容器,即该容器的底层是以双向链表的形式实现的。这意味着,list 容器中的元素可以分散存储在内存空间里,而不是必须存储在一整块连续的内存空间中。

list 容器具有一些其它容器(array、vector 和 deque)所不具备的优势,即它可以在序列已知的任何位置快速插入或删除元素(时间复杂度为O(1))。并且在 list 容器中移动元素,也比其它容器的效率高。

和之前的序列容器相比,list 容器迭代器最大的不同在于,其配备的迭代器类型为双向迭代器,而不再是随机访问迭代器。

成员函数功能
begin()返回指向容器中第一个元素的双向迭代器。
end()返回指向容器中最后一个元素所在位置的下一个位置的双向迭代器。
rbegin()返回指向最后一个元素的反向双向迭代器。
rend()返回指向第一个元素所在位置前一个位置的反向双向迭代器。
cbegin()和 begin() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
cend()和 end() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
crbegin()和 rbegin() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
crend()和 rend() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
empty()判断容器中是否有元素,若无元素,则返回 true;反之,返回 false。
size()返回当前容器实际包含的元素个数。
max_size()返回容器所能包含元素个数的最大值。这通常是一个很大的值,一般是 232-1,所以我们很少会用到这个函数。
front()返回第一个元素的引用。
back()返回最后一个元素的引用。
assign()用新元素替换容器中原有内容。
emplace_front()在容器头部生成一个元素。该函数和 push_front() 的功能相同,但效率更高。
push_front()在容器头部插入一个元素。
pop_front()删除容器头部的一个元素。
emplace_back()在容器尾部直接生成一个元素。该函数和 push_back() 的功能相同,但效率更高。
push_back()在容器尾部插入一个元素。
pop_back()删除容器尾部的一个元素。
emplace()在容器中的指定位置插入元素。该函数和 insert() 功能相同,但效率更高。
insert()在容器中的指定位置插入元素。
erase()删除容器中一个或某区域内的元素。
swap()交换两个容器中的元素,必须保证这两个容器中存储的元素类型是相同的。
resize()调整容器的大小。
clear()删除容器存储的所有元素。
splice()将一个 list 容器中的元素插入到另一个容器的指定位置。
remove(val)删除容器中所有等于 val 的元素。
remove_if()删除容器中满足条件的元素。
unique()删除容器中相邻的重复元素,只保留一个。
merge()合并两个事先已排好序的 list 容器,并且合并之后的 list 容器依然是有序的。
sort()通过更改容器中元素的位置,将它们进行排序。
reverse()反转容器中元素的顺序。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <iostream>
#include <list>
using namespace std;

int main()
{
//创建空的 list 容器
std::list<double> values;
//向容器中添加元素
values.push_back(3.1);
values.push_back(2.2);
values.push_back(2.9);
cout << "values size:" << values.size() << endl;
//对容器中的元素进行排序
values.sort();
//使用迭代器输出list容器中的元素
for (std::list<double>::iterator it = values.begin(); it != values.end(); ++it) {
std::cout << *it << " ";
}
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <iostream>
#include <list>
#include <array>
using namespace std;
int main()
{
std::list<int> values{ 1,2 };
//第一种格式用法
values.insert(values.begin() , 3);//{3,1,2}

//第二种格式用法
values.insert(values.end(), 2, 5);//{3,1,2,5,5}

//第三种格式用法
std::array<int, 3>test{ 7,8,9 };
values.insert(values.end(), test.begin(), test.end());//{3,1,2,5,5,7,8,9}

//第四种格式用法
values.insert(values.end(), { 10,11 });//{3,1,2,5,5,7,8,9,10,11}

for (auto p = values.begin(); p != values.end(); ++p)
{
cout << *p << " ";
}
return 0;
}

关联式容器

关联式容器在存储元素值的同时,会为各元素额外再配备一个值(又称为“键”,其本质也是一个 C++ 基础数据类型或自定义类型的元素),它的功能是在使用关联式容器的过程中,如果已知目标元素的键的值,则直接通过该键就可以找到目标元素,而无需再通过遍历整个容器的方式。

弃用序列式容器,转而选用关联式容器存储元素,往往就是看中了关联式容器可以快速查找、读取或者删除所存储的元素,同时该类型容器插入元素的效率也比序列式容器高。

也就是说,使用关联式容器存储的元素,都是一个一个的“键值对”( ),这是和序列式容器最大的不同。除此之外,序列式容器中存储的元素默认都是未经过排序的,而使用关联式容器存储的元素,默认会根据各元素的键值的大小做升序排序

关联式容器名称特点
map定义在 头文件中,使用该容器存储的数据,其各个元素的键必须是唯一的(即不能重复),该容器会根据各元素键的大小,默认进行升序排序(调用 std::less)。
set定义在 头文件中,使用该容器存储的数据,各个元素键和值完全相同,且各个元素的值不能重复(保证了各元素键的唯一性)。该容器会自动根据各个元素的键(其实也就是元素值)的大小进行升序排序(调用 std::less)。
multimap定义在 头文件中,和 map 容器唯一的不同在于,multimap 容器中存储元素的键可以重复。
multiset定义在 头文件中,和 set 容器唯一的不同在于,multiset 容器中存储元素的值可以重复(一旦值重复,则意味着键也是重复的)。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <iostream>
#include <map> //使用 map 容器,必须引入该头文件
#include <string>
using namespace std;
int main()
{
//创建一个空的 map 关联式容器,该容器中存储的键值对,其中键为 string 字符串,值也为 string 字符串类型
map<string, string> mymap;
//向 mymap 容器中添加数据
mymap["http://c.biancheng.net/c/"] = "C语言教程";
mymap["http://c.biancheng.net/python/"] = "Python教程";
mymap["http://c.biancheng.net/java/"] = "Java教程";

//使用 map 容器的迭代器,遍历 mymap 容器,并输出其中存储的各个键值对
for (map<string, string>::iterator it = mymap.begin(); it != mymap.end(); ++it) {
//输出各个元素中的键和值
cout << it->first << " => " << it->second << '\n';
}
return 0;
}

考虑到“键值对”并不是普通类型数据,C++ STL 标准库提供了 pair 类模板,其专门用来将 2 个普通元素 first 和 second(可以是 C++ 基本数据类型、结构体、类自定的类型)创建成一个新元素<first, second>。通过其构成的元素格式不难看出,使用 pair 类模板来创建“键值对”形式的元素

pair 类模板定义在<utility>头文件中,所以在使用该类模板之前,需引入此头文件。另外值得一提的是,在 C++ 11 标准之前,pair 类模板中提供了以下 3 种构造函数:

1) 默认构造函数,即创建空的 pair 对象pair();

2) 直接使用 2 个元素初始化成 pair 对象pair (const first_type& a, const second_type& b);

3) 拷贝(复制)构造函数,即借助另一个 pair 对象,创建新的 pair 对象template pair (const pair& pr);

在 C++ 11 标准中,在引入右值引用的基础上,pair 类模板中又增添了如下 2 个构造函数:

4) 移动构造函数template pair (pair&& pr);#5) 使用右值引用参数,创建 pair 对象template pair (U&& a, V&& b);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <iostream>
#include <utility> // pair
#include <string> // string
using namespace std;
int main() {
// 调用构造函数 1,也就是默认构造函数
pair <string, double> pair1;
// 调用第 2 种构造函数
pair <string, string> pair2("STL教程","http://c.biancheng.net/stl/");
// 调用拷贝构造函数
pair <string, string> pair3(pair2);
//调用移动构造函数
pair <string, string> pair4(make_pair("C++教程", "http://c.biancheng.net/cplus/"));
// 调用第 5 种构造函数
pair <string, string> pair5(string("Python教程"), string("http://c.biancheng.net/python/"));

cout << "pair1: " << pair1.first << " " << pair1.second << endl;
cout << "pair2: "<< pair2.first << " " << pair2.second << endl;
cout << "pair3: " << pair3.first << " " << pair3.second << endl;
cout << "pair4: " << pair4.first << " " << pair4.second << endl;
cout << "pair5: " << pair5.first << " " << pair5.second << endl;
return 0;
}

map

1
2
3
4
5
6
map<string,int>myMap;
map<string,int>mymap{{"C语言",10},{"C++教程",20}};
map<string,string>m{make_pair("hi","hello")};
map<string,string>copiedmap{m};

map<string,int,greater<string> >hismap;

常用的成员函数是find,count

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <iostream>
#include <map> // map
#include <string> // string
using namespace std;

int main() {
//创建空 map 容器,默认根据个键值对中键的值,对键值对做降序排序
std::map<std::string, std::string, std::greater<std::string>>myMap;
//调用 emplace() 方法,直接向 myMap 容器中指定位置构造新键值对
myMap.emplace("C语言教程","http://c.biancheng.net/c/");
myMap.emplace("Python教程", "http://c.biancheng.net/python/");
myMap.emplace("STL教程", "http://c.biancheng.net/stl/");
//输出当前 myMap 容器存储键值对的个数
cout << "myMap size==" << myMap.size() << endl;
//判断当前 myMap 容器是否为空
if (!myMap.empty()) {
//借助 myMap 容器迭代器,将该容器的键值对逐个输出
for (auto i = myMap.begin(); i != myMap.end(); ++i) {
cout << i->first << " " << i->second << endl;
}
}
return 0;
}

set

1
2
3
4
5
6
7
set<string> myset{"shit"};
set<string> set2{
"hi",
"hello"
};
set<string> s1(set2);
s.emplace("hi");

删除元素 erase

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <iostream>
#include <set>
#include <string>
using namespace std;
int main()
{
//创建并初始化 set 容器
std::set<int>myset{1,2,3,4,5};
cout << "myset size = " << myset.size() << endl;

//1) 调用第一种格式的 erase() 方法
int num = myset.erase(2); //删除元素 2,myset={1,3,4,5}
cout << "1、myset size = " << myset.size() << endl;
cout << "num = " << num << endl;

//2) 调用第二种格式的 erase() 方法
set<int>::iterator iter = myset.erase(myset.begin()); //删除元素 1,myset={3,4,5}
cout << "2、myset size = " << myset.size() << endl;
cout << "iter->" << *iter << endl;

//3) 调用第三种格式的 erase() 方法
set<int>::iterator iter2 = myset.erase(myset.begin(), --myset.end());//删除元素 3,4,myset={5}
cout << "3、myset size = " << myset.size() << endl;
cout << "iter2->" << *iter2 << endl;
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <iostream>
#include <set>
#include <string>
using namespace std;

int main()
{
//创建空set容器
std::set<std::string> myset;
//空set容器不存储任何元素
cout << "1、myset size = " << myset.size() << endl;
//向myset容器中插入新元素
myset.insert("http://c.biancheng.net/java/");
myset.insert("http://c.biancheng.net/stl/");
myset.insert("http://c.biancheng.net/python/");
cout << "2、myset size = " << myset.size() << endl;
//利用双向迭代器,遍历myset
for (auto iter = myset.begin(); iter != myset.end(); ++iter) {
cout << *iter << endl;
}
return 0;
}
函数介绍
upper_bound(val)返回一个指向当前 set 容器中第一个大于 val 的元素的迭代器。如果 set 容器用 const 限定,则该方法返回的是 const 类型的双向迭代器。
equal_range(val)该方法返回一个 pair 对象(包含 2 个双向迭代器),其中 pair.first 和 lower_bound() 方法的返回值等价,pair.second 和 upper_bound() 方法的返回值等价。也就是说,该方法将返回一个范围,该范围中包含的值为 val 的元素(set 容器中各个元素是唯一的,因此该范围最多包含一个元素)。
lower_bound(val)返回一个指向当前 set 容器中第一个大于或等于 val 的元素的双向迭代器。如果 set 容器用 const 限定,则该方法返回的是 const 类型的双向迭代器。

注意count,find等新的成员函数

此外关联式容器还有multimap和multiset,这里不介绍了.

无序关联式容器

和关联式容器一样,无序容器也使用键值对(pair 类型)的方式存储数据。不过,它们有本质上的不同:

  • 关联式容器的底层实现采用的树存储结构,更确切的说是红黑树结构;
  • 无序容器的底层实现采用的是哈希表的存储结构。

总的来说,实际场景中如果涉及大量遍历容器的操作,建议首选关联式容器;反之,如果更多的操作是通过键获取对应的值,则应首选无序容器。

无序容器功能
unordered_map存储键值对 类型的元素,其中各个键值对键的值不允许重复,且该容器中存储的键值对是无序的。
unordered_multimap和 unordered_map 唯一的区别在于,该容器允许存储多个键相同的键值对。
unordered_set不再以键值对的形式存储数据,而是直接存储数据元素本身(当然也可以理解为,该容器存储的全部都是键 key 和值 value 相等的键值对,正因为它们相等,因此只存储 value 即可)。另外,该容器存储的元素不能重复,且容器内部存储的元素也是无序的。
unordered_multiset
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;

int main()
{
//创建并初始化一个 unordered_map 容器,其存储的 <string,string> 类型的键值对
std::unordered_map<std::string, std::string> my_uMap{
{"C语言教程","http://c.biancheng.net/c/"},
{"Python教程","http://c.biancheng.net/python/"},
{"Java教程","http://c.biancheng.net/java/"} };
//查找指定键对应的值,效率比关联式容器高
string str = my_uMap.at("C语言教程");
cout << "str = " << str << endl;

//使用迭代器遍历哈希容器,效率不如关联式容器
for (auto iter = my_uMap.begin(); iter != my_uMap.end(); ++iter)
{
//pair 类型键值对分为 2 部分
cout << iter->first << " " << iter->second << endl;
}
return 0;
}

迭代器

迭代器是cpp STL库的概念,要访问顺序容器和关联容器中的元素,需要通过“迭代器(iterator)”进行。迭代器是一个变量,相当于容器

和操纵容器的算法之间的中介。迭代器可以指向容器中的某个元素,通过迭代器就可以读写它指向的元素。从这一点上看,迭代器和指针类似.

通过迭代器可以读取它指向的元素,*迭代器名就表示迭代器指向的元素。通过非常量迭代器还能修改其指向的元素。

迭代器都可以进行++操作。反向迭代器和正向迭代器的区别在于:

  • 对正向迭代器进行++操作时,迭代器会指向容器中的后一个元素;
  • 而对反向迭代器进行++操作时,迭代器会指向容器中的前一个元素

迭代器的分类

常用的迭代器按功能强弱分为输入、输出、正向、双向、随机访问五种,这里只介绍常用的三种。

1) 正向迭代器。假设 p 是一个正向迭代器,则 p 支持以下操作:++p,p++,*p。此外,两个正向迭代器可以互相赋值,还可以用==!=运算符进行比较。

2) 双向迭代器。双向迭代器具有正向迭代器的全部功能。除此之外,若 p 是一个双向迭代器,则--pp--都是有定义的。--p使得 p 朝和++p相反的方向移动。

3) 随机访问迭代器。随机访问迭代器具有双向迭代器的全部功能。若 p 是一个随机访问迭代器,i 是一个整型变量或常量,则 p 还支持以下操作:

  • p+=i:使得 p 往后移动 i 个元素。
  • p-=i:使得 p 往前移动 i 个元素。
  • p+i:返回 p 后面第 i 个元素的迭代器。
  • p-i:返回 p 前面第 i 个元素的迭代器。
  • p[i]:返回 p 后面第 i 个元素的引用
容器迭代器功能
vector随机访问
deque随机访问
list双向
set / multiset双向
map / multimap双向
stack不支持迭代器
queue不支持迭代器
priority_queue不支持迭代器

迭代器的辅助函数

STL 中有用于操作迭代器的三个函数模板,它们是:

  • advance(p, n):使迭代器 p 向前或向后移动 n 个元素。
  • distance(p, q):计算两个迭代器之间的距离,即迭代器 p 经过多少次 + + 操作后和迭代器 q 相等。如果调用时 p 已经指向 q 的后面,则这个函数会陷入死循环。
  • iter_swap(p, q):用于交换两个迭代器 p、q 指向的值。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <list>
#include <iostream>
#include <algorithm> //要使用操作迭代器的函数模板,需要包含此文件
using namespace std;
int main()
{
int a[5] = { 1, 2, 3, 4, 5 };
list <int> lst(a, a+5);
list <int>::iterator p = lst.begin();
advance(p, 2); //p向后移动两个元素,指向3
cout << "1)" << *p << endl; //输出 1)3
advance(p, -1); //p向前移动一个元素,指向2
cout << "2)" << *p << endl; //输出 2)2
list<int>::iterator q = lst.end();
q--; //q 指向 5
cout << "3)" << distance(p, q) << endl; //输出 3)3
iter_swap(p, q); //交换 2 和 5
cout << "4)";
for (p = lst.begin(); p != lst.end(); ++p)
cout << *p << " ";
return 0;
}
-------------本文结束感谢您的阅读-------------
感谢阅读.

欢迎关注我的其它发布渠道